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@ Question we are concerned

© Nearest-neighbor random walk
@ (2,1) random walk

O (1,2) random walk

© Recurrence criteria



Question we are concerned

X, : a random walk on Z%, either nearest-neighbor or non-nearest-
neighbor, starting from Xg. Let

D=inf{n>0:X, < Xo}
be the first ‘return’ time and
M =max{X, :0<n <D}

be the maximum of the excursion {Xy, X1, ..., Xp}.
Questions:
& Compute P(M =n,D < c0) =? (easy task!)
& Find f(n) such that
lim f(n)P(M =n,D < o) =c¢ > 0. (not so easy!!)
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We study three models:

o Nearest-neighbor random walk X.
@ (2,1) random walk Y.
e (1,2) random walk Y.

& Nearest-neighbor setting «~ product of a sequence of numbers.
& (2,1) random walk «~ product of nonhomogeneous matrices.

& (1,2) random walk «~ product of a sequence of continued fractions.



Nearest Setting

Suppose {X,,} is a nearest neighbor random walk:

P(Xy=1)=1,

P(X,=1X,-1=0)=1,
PX,=k+1|Xn1=k)=pp
PX,=k—-1Xp1=k)=q:=1—pg, k>1,

where p; € (0,1),Vk > 1. Write p;, = 272’ and define for a < k < b,

Py(a,b,—) = P(X hits a before b| Xy = k).

For 0 < a < k < b, we have

b—1
Zj:k Patl " Pj

Pk:(avba_) = b—1 .
1+ Zj:a+1 Pa+1 """ Pj




For the chain {X,,}, we have

P(M =n,D < o) =(1-P(0,n,—))P,(0,n+1,—)
1 ' P11 Pn
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Simple random walk

Suppose that p; = p € (0,1),4 > 1 and let p := 1%1”. Then

1 —
nnt1)’ p=1,
P(M =n,D < o0) ~ 1 (1-p)?p", p<1, asn— oo.
(1—p)2p= D p>1,

Thus,

(a) if p =1, X is null recurrent and P(M = n) decays polynomially;
(b)if p < 1, X is transient and P(M = n, D < co) decays exponentially;
(c) if p > 1, X is positive recurrent and P(M = n) decays exponentially.



Question: Besides the polynomial and exponential ones, can
P(M =n,D < o) decays with other rates?

YES: adding some perturbation on the recurrent simple random walk.
For K > 1, B € R, set

*

B 1 B
A(1,i,B) = —,A(2,i,B) = = 4 - -
(1,3, B) 1 (2,4, B) Z+’LlOgZ

1 1 1 B
AK,i,B)==+ ———+ ...+ —— -+ s
i dlogi ilogi---logy_ot ilogi---logg_q1

where log, i = i,log; i =logt,..,logy i = loglog_; i. Set

A(K,i,B)| 1
iomin{izlogK1i>0,(Z’)|<2}.

For fixed B€ R and K =1,2,... set



Theorem 1

Fix K > 1 and B € R.
(1) If p, = % + ry,4 > 1, then, as n — oo,
nlognloglogn---lcogK71 n(logg n)?? if B= L,
P(M =n,D < OO) ~ nlognloglog;nmlo(éK_2 n(logg_, n)B’ if B> 1,
nlognloglognmlogi_2 n(logg_,n)2— B> if B<1.
(ii) If p; = § — 74,4 > 1, then, as n — oo,
o ifK=18B> 1,
P(M =n,D Ao ifK=15=-1,
( —TL, <OO)N an7 lfK:17B<—17
P logn...loch_2 ”(10g?<,1)B’if K>1.




Proof sketch: We already knew that

1 ~

P(M =n,D < )=
L+ 30 preeopj 1+Z/ 1P1

By some delicate computation, we can show
Lemma. Fix K =1,2,.. and B € R.
(a) If p; = % +7;,4 > 1, then

c

P Pn ~ as n — o0.

nlognloglogn - -logx on(logg_;n)BE’

(b) If p; = % —7;,7>1, then

p1- - pn ~ cnlognloglogn - -log_on(logy_4 n)B7as n — o0.

Furthermore, though it is very complicated, the term > 7, p
can be estimated by using the above lemma.

P
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Suppose

Vk>2,q5,px >0, qi +pi = 1.

(2,1) Random walk Y
Y = {Yi}r>0 : a Markov chain on Z, such that

P(Yis1 = 1Y, = 0) = P(Yiyy = 2|V = 1) = 1,
P(Yit1 =n+ 1Y, =n) = qn,
P(Yk+1 :n—Z\Yk :n) :pn,TLZ Q,k‘ > 0.

(1,2) Random walk Y’

Y’ = {Y/}x>0 : a Markov chain on Z, such that
PVl =0V = 1) = P(Vly = 2¥] = 0) = 1,
PV =n—1Y =n) = qn,
P(Yi  =n+2Y,=n)=pp,n>2k>0.



& Unless otherwise stated, we always assume that both Y and Y’
start from yo = y{, = 2.

& Y’ is usually called the adjoint chain of Y and vice versa.

Dn Qn

VAN

0 n — 2 n n—+1

(2,1) random walk Y’

qn Pn

A~ O\

0 n—1 n n+2
(1,2) random walk Y




For k > 2, introduce matrix

Proposition 1

Consider (2,1) random walk Y. For n > 2, we have

1 ean...Nzei
1+ LeN, - Npel 1+ 51N, - Npel’

P(M =n,D < ) =

We see from Proposition 1 that, in order to study the limit behavior of
P(M =n,D < o0), one has to study at first the asymptotics of

eN, - Nget1

which involve the asymptotics of the product of nonhomogeneous
matrices and are extremely complicated.



We expect that
ean e N29t1 ~ CQ(Nn) e Q(NZ)

with o(NVy) the spectral radius of Nj.
Let ag, by, di, k > 1 be certain positive numbers and for k > 1, set

Ay = (Z: bg) (1)

(B1) For some o > 0, ag, bg,dr > o for all k > 1 and
o0

Z lar — ak—1] + |bx — bg—1] + |dg — dr—1| < 0.
k=2

Under (B1),

A=)+ (5 0) = @

for proper a,b,d > 0.



Suppose now condition (B1) holds. We introduce further the following
conditions which are mutually exclusive.

(B2)a Jko > 0, such that & = g1 die o Dol gk >k and

br41 br41

I di /b, — diy1/brg1
1m
k=00 djy1/bry1 — dit2/brt2

exists as a finite or infinite number.
(B2), 3ko > 0, such that 9= £ g2 de — ds1 -yl > kg and

bri1’ b bri1

. ak /by — ag+1/br+1
1m
k=00 apt1/bry1 — Qry2/brt2

exists as a finite or infinite number.



(B2). ko > 0, such that & # £ 4o £ D1 gk > gy and

b1 b 41

7= lim dk/bk - dk+1/bk+1 ” —a + Va2 + 4bd
" koo ak/bk — ak+1/bk+1 2b

exists as a finite or infinite number. In addition, if 7 is finite, assume

Jbp— b . . .
ar/bk—ari1/Oi1  ovicts ag a finite or infinite number.
+1/bkt1—apy2/bryo

. . di /by —di1/b
Otherwise, if 7 = 00, assume further limy_, dH’:;b:HfZiz’ﬁ:H

further limy,_, o ar

exists
as a finite or infinite number.
Remark.
& Conditions (B2)a, (B2), and (B2), look very awkward, but it is
easy to find examples such that one of them is satisfied.

® Roughly speaking, it requires that ay, bx and dj may fluctuate in
different orders, but should fluctuate in some common manner.



Suppose condition (B1) and one of (B2),, (B2); and (B2). hold. Then
Vi, j € {1,2}, there exists 0 < ¢ < oo such that

. eiAk 000 Alez-
lim ———— = C.

k—o0 Q(Ak) OO Q(Al)

Remark. Theorem 2 has been generalized to general nonnegative ma-

trices
_(ar by
Ak = (dk 9k> .

@ H. M. Wang. On extinction time distribution of a 2-type linear-
fractional branching process in varying environment with asymp-
totically constant mean matrices. arXiv: 2106.01203, 2021.



Sketched proof of Theorem 2.

elAk---Aletl'

Step 1. Show that ¢35 < o(An) (A1) < 4.
(1) Show that o(Ay)---0(A1) < 0(Ag - - A1).
(2) Show that g(Ay -+ A1) ~ pej Ay --- Ajel.

t
Step 2. Show that lim,, % —

Ap-Aret Ap--Ajel
CLAk 1e1) and fj 1= 228208 Then

Set T 1= Srag(An) 61 A, Arel

c3 < xp <y,

Thi1 — Tk = (0(Ar1)2r) " (@rg1 — 0(Akg1) + brs1 ),

Th+41 1
= b
. o(Ary) (ak+1 + bky1fr),

Bk Bk B P11 . _ag dy
fo=— —= —, withap = — = —.
ap + Q1 + - g + 1 b b

fr is usually referred to as the critical tail of a continued fraction.



Critical tail sequence of a continued fraction

Lemma

Suppose that ag, Bx,wr > 0,k > 1 are numbers such that ayp — «,
/2 —

Br — 3, andwk%w::w, as k — oo, where 0 < a, 8 < o©

are certain constants. For k > 1, let

_B Bt B B

Je = :
Qp + Qg1 + Q2 +

Set
er = fr —wi, k>1and 0 = By —wp(ok +wi—1),k > 2.

Let ¢ be a fixed number. We have

O
if lim =g, then |g| > 1 and lim —— = g;
k—o00 k41 k—00 Of41
e 1. . Ek 1+w
if lim = ¢, then |g| > 1 and lim =qor — ——.
k—o00 041 k—00 €1 w




Suppose condition (B1) and one of (B2),, (B2); and (B2). hold. Set
‘/042 —Q
Br = dg/bk, ax, = ax/br, k > 1. Let wy, := k+1+4§k+1 i ,k>1and

O = Br — wr(ag + wi—1),k > 2. Then limy_, (sfﬁ exists as an finite
or infinite number.

Using the above two lemmas, we can show that one of the following
three cases happens:

(i) ZmZQ |£L'm - $m71| < 003
(ii) a1 — Tm, m > Ny converges to 0 alternatively;
(iii) @, m > N3 is monotone in m.

elAk---Aletl =c
o(Ag)-0(Ar) —
Theorem 2 is proven. O

Consequently limy o zp = limg_s oo



Maximum of (2,1) random walk

A(K,i,B) . .

) g >

Let i :—{ 3 =
Tigs 1 < 10,

Consider (2,1) random walk Y. Fix K =1,2,3,... and B € R.
(i) If i = 2 + 73,1 > 2, then, as n — oo,

C 1 —
nlogn---logy_,nlogyx 1 n(logyg n)2’ it B=1,
¢ if B> 1,

P(M =n,D < c0) ~

nlogn--logy _,n(log,_, n)B"
@

nlogn---logy_,n(logg_, n)2~ B> if B<1.
(ii) If ¢; = % — 1,17 > 2, then, as n — oo,
nBC+27 ifK=1,B> -1,

e K =1,B=—1,
P(M=nD<oo)~{ 5 ifK=1,B< -1,

@ .
n3logn...logy_,n(logi_, n)B? if K> 1.




Sketched proof of Theorem 3.

Note that
o(Ni) = (9k +4/67 +49k> /2.

If g; = % +7;,7 > 2, then by Taylor enpension of o(Ny) at 0, we get
o(Ny) = 1F 3r, + O(r?) as k — oo. (3)

The proposition below yields the asymptotics of o(Ng) - o(N7).

Proposition 2

Suppose that o;,7 > 2 is a sequence of numbers such that
o; =143r; +O(r?) as i — oo.
Then we have as n — oo,
oy 0on ~c(nlogn---logg_,n(logg_, n)B)il
Oo -0

Z?:l 0905

)

— 0.




Recall that Ny := (91k 90’“) with 6, 1= 2.

By the following lemma, for the product N - - - No, k > 2, requirements
of Theorem 2 are all fulfilled.

Whenever ¢; = 2/3 £ r;,i > 2,

(i) we have lim In—#t = 1/3 and thus Y7, [fk1 — 0| < co (B1);

(ii) for k > i, we have é - 9k1+1 and limy_, o0 % =1 (B2).

Applying Theorem 2 and Proposition 2, if ¢; = % + 7,1 > 2, we get as
n — 0o,

e1N,, -+ Nael ~ co(Na) - o(Ny)

~c(nlogn---logyx_yn(logx_, n)B)ﬂ.



But by Proposition 1, for (2,1) random walk Y, we have

1 elN,,, cee Nge,i

PM=n,D < o0)= - .
( ) 1—|—Z::_21 ele--~Ngeﬁ 1+Zs:261N9"'N26t1

Consequently, Theorem 3 can be proved by an argument similar to the
proof Theorem 1(Nearest-neighbor setting). |

Finally, we consider (1,2) random walk Y’ which is more difficult.

To derive similar result, besides the asymptotics of product of nonnega-
tive matrices, we need to develop further some other techniques related
to the limit periodic continued fractions and the hitting probabilities
of the walk.



Maximum of (1,2) random walk

Theorem 4

Consider (1,2) random walk Y’. Fix K =1,2,3,... and B € R.
(i) If p; = % + 1,1 > 2, then, as n — oo,
nlogn---logy _, nclogK_1 n(logy n)?? if B=1,
& .
P(M =n,D < o0) ~ mlognTog g5 (g )’ if B> 1,
nlogn--<logK726n(logK71 n)2-B> if B<1.
(ii) If p; = % — 1,1 > 2, then, as n — oo,
nB_c+2’ if K=1,B>—1,
PM D m, lfK:].,B:—l,
=, 10 < we) o0 fK=1B< -1,
n3 logn...logK_C2 n(logg_,n)B? if K> 1.




What is the difficulty?
Let
Pr(m,n,+) = P(Y' hits [n, o] before [0, m]|Yy = k)
Py (m,n,+) = P(Y' hits [n, co] at n before [0, m]|Yy = k),
Pt (m,n,+) = P(Y” hits [n,00] at n + 1 before [0,m]|Yy = k).

Clearly, Pyx(m,n,+) = Pp(m,n,+) + Py (m,n, +).
By Markov property, we can get
P(M =n,D <o00)=P1,n,+)1—P,(1,n+1,+)).
It can be shown that
1
T 1+ ,eiN,---Nyel’
1+ZZ;21e1NS-~-Nn,1et2 t t)

Prn 1771/7_|_ 261N2"'Nn—1< — e —e
2( ) 1+Z:’:21e1NS...Nn_1ei 1 2

1-P.(l,n+1,4)

which are hard to estimate even though we know that e N,, - - - Nsetl ~
c(8)o(N,,) -+ - o(Ny), since every summand there depends on n.



Continued fraction and escape probability

For n > 2, set ) .
5: ;1 0n+1 0n+2
T4+ 1+ 1 A

The next lemma gives the escape probabilities of (1,2) random walk.

Lemma(Letchikov 1988)

£2£n 52“'£n+§2"‘§n+1
T <1—Pu(lin+1,+4) < :
1+Zi=2g2.._£i< (Ln+1,+) < Y 66
1 1

SP2(17n7 +) S

1+37 6 & T+ 68

We note that

(i) the upper bound of the term 1 — P, (1,n + 1,+) is approximately
twice as much as the lower bound, so that it is not enough for us to get
the accurate limit behavior of 1 — P, (1,n + 1,+);

(ii) what we need indeed is not Ps(1,n,+) but Py (1, n,+).



But we know that

Po(l,n,+) = Py(l,n, +) + Py (1, n, +).

Suppose that p; = % + 7;,1 > 2. Then we have

P3(1,n,+)
l)m Pn+1 =
nTee (1an7+)

The proof of the lemma is a long journey.
The idea is to construct a new Markov chain related to Y’.

Let
E,, = {Y” hits [n, 00) before it hits [0, 1]}.

Define a measure P by

P() = P(|E,).



Let
T, :=inf{k >0:Y/, € [n,00)},n > 3.

Then T,, < oo almost surely.
We can show that Y is a Markov chain under P with transition prob-
abilities

PYl =4V =2k<T,) =1,

~ ) ) Piy2(1,n,+) ~

P Y/ — 2 Y/ — k T’IL — lu =:p;

( k+1 1+ ‘ k Z, < ) p 7)1(1,71,4-) Dis

P =i— 1Y =ik<T,)=1-p;=G,3<i<n-—1

Based on this fact, the lemma can be proved by some delicate analysis
of the hitting times of the new Morkov chain.



Finally, we deal with the term

1_Pn(17n+17+): 1+ZZ:261N5'-~Nne§.

If pi=1/3 £r;,i > 2, then

1-Pu(lint1,+)~c nffén , as n — oo.
ZS:Z 55—1
Idea of proof. For 2 < s <n+1, set
Ys == e1Ns-- 'Nneﬁ and gsm = w
Ys,n

Then elNS"'Nnetlzysn: =1, ., ¢-1

; ER RN RO



Thus we obtain

1 om- &n,
1=Pn(lin+1,+) = ntl o—1 = n+1n s

25:2 ER T frz}z 25:2 52,n e gs—l,n .

If we can show

52,71 co gn,n ~ 052 T gnv (4)

n+1 n+1

ZSZ,n"'gsfl,n ~ Z&Q"‘gsflv (5)
s=2 s=2

as n — 0o, then

§2--&n

1-Pu(ln+1,4) ~ om0
Yl e b

It can be shown that




Then (4) and (5) can be proved with the help of the limit theory
of limit periodic continued fraction and Theorem 2( e;N,, - - - Noel ~
co(Na) -+ 0(Ny)). O

The lemma below presents several limit behaviors related to &,,n > 2.

Lemma(W. 2019)
If p; =1/3 £ r;,4 > 2, then we have

& =1F3r, +O(r2) as n — oo,

and consequently,

Lo bp~e (nlogn...log}F2 n(logx_ n)B)jFl,
ool
&g

— 0, as n — oo.




We now give the proof of Theorem 4. Suppose that p; = 1/3+r;,i > 2.
Then we have

P(M =n,D <o0)=P3(1,n,+)(1 —Pp(l,mn+1,4))
R A S
Yiampberbmr Y 66

~ C

, as n — o0.

Furthermore,
& & ~c(nlogn---logg_on(logr_y n)B)$1 , as m — 00.

With the above facts in hands, once again, the proof of Theorem 4 is
just a step-by-step repetition of that of Theorem 1. m]



Recurrence Criteria

Proposition

(1) Foerl,ifqizé—i—ri, i22(0rpi:%—ri, i > 2), then

B > 1=Y is transient and Y’ is positive recurrent;
B < —1 =Y’ is transient and Y is positive recurrent;
B €[-1,1] = both Y and Y’ are null recurrent.

(ii) For K > 2,if ¢; = 2 4+ r;, i > 2, then

B > 1=Y is transient and Y’ is positive recurrent;
B < 1= both Y and Y’ are null recurrent.

(iii) For K > 2, if ¢; = 2 —r;, i > 2, then

B > 1= Y’ is transient and Y is positive recurrent;
B <1= both Y and Y’ are null recurrent.
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