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Question we are concerned

Xn : a random walk on Z+, either nearest-neighbor or non-nearest-
neighbor, starting from X0. Let

D = inf{n ≥ 0 : Xn < X0}

be the first ‘return’ time and

M = max{Xn : 0 ≤ n ≤ D}

be the maximum of the excursion {X0, X1, ..., XD}.
Questions:

♠ Compute P (M = n,D <∞) =? (easy task!)

♠ Find f(n) such that

lim
n→∞

f(n)P (M = n,D <∞) = c > 0. (not so easy!!)





Basic points

We study three models:

Nearest-neighbor random walk X.

(2,1) random walk Y.

(1,2) random walk Y ′.

♠ Nearest-neighbor setting ! product of a sequence of numbers.

♠ (2,1) random walk ! product of nonhomogeneous matrices.

♠ (1,2) random walk ! product of a sequence of continued fractions.



Nearest Setting

Suppose {Xn} is a nearest neighbor random walk:

P (X0 = 1) = 1,

P (Xn = 1|Xn−1 = 0) = 1,

P (Xn = k + 1|Xn−1 = k) = pk

P (Xn = k − 1|Xn−1 = k) = qk := 1− pk, k ≥ 1,

where pk ∈ (0, 1),∀k ≥ 1. Write ρk = qk
pk
, and define for a < k < b,

Pk(a, b,−) = P (X hits a before b|X0 = k).

Lemma
For 0 ≤ a ≤ k ≤ b, we have

Pk(a, b,−) =

∑b−1
j=k ρa+1 · · · ρj

1 +
∑b−1
j=a+1 ρa+1 · · · ρj

.



Corollary

For the chain {Xn}, we have

P (M = n,D <∞) = (1− P1(0, n,−))Pn(0, n+ 1,−)

=
1

1 +
∑n−1
j=1 ρ1 · · · ρj

· ρ1 · · · ρn
1 +

∑n
j=1 ρ1 · · · ρj

.

Simple random walk

Suppose that pi ≡ p ∈ (0, 1), i ≥ 1 and let ρ := 1−p
p . Then

P (M = n,D <∞) ∼


1

n(n+1) , ρ = 1,

(1− ρ)2ρn, ρ < 1,
(1− ρ)2ρ−(n+1), ρ > 1,

as n→∞.

Thus,

(a) if ρ = 1, X is null recurrent and P (M = n) decays polynomially;

(b) if ρ < 1, X is transient and P (M = n,D <∞) decays exponentially;

(c) if ρ > 1, X is positive recurrent and P (M = n) decays exponentially.



Question: Besides the polynomial and exponential ones, can
P (M = n,D <∞) decays with other rates?

YES: adding some perturbation on the recurrent simple random walk.

For K ≥ 1, B ∈ R, set

Λ(1, i, B) =
B

i
,Λ(2, i, B) =

1

i
+

B

i log i
, . . . ,

Λ(K, i,B) =
1

i
+

1

i log i
+ ...+

1

i log i · · · logK−2 i
+

B

i log i · · · logK−1 i
,

where log0 i = i, log1 i = log i, .., logK i = log logK−1 i. Set

i0 = min

{
i : logK−1 i > 0,

|Λ(K, i,B)|
4

<
1

2

}
.

For fixed B ∈ R and K = 1, 2, ... set

ri =

{
Λ(K,i,B)

4 , i ≥ i0,
ri0 , i < i0.



Theorem 1
Fix K ≥ 1 and B ∈ R.
(i) If pi = 1

2 + ri, i ≥ 1, then, as n→∞,

P (M = n,D <∞) ∼


c

n logn log logn··· logK−1 n(logK n)2 , if B = 1,
c

n logn log logn··· logK−2 n(logK−1 n)B
, if B > 1,

c
n logn log logn··· logK−2 n(logK−1 n)2−B , if B < 1.

(ii) If pi = 1
2 − ri, i ≥ 1, then, as n→∞,

P (M = n,D <∞) ∼


c

nB+2 , if K = 1, B > −1,
c

n(logn)2 , if K = 1, B = −1,

cnB , if K = 1, B < −1,
c

n3 logn... logK−2 n(logn
K−1)B

, if K > 1.



Proof sketch: We already knew that

P (M = n,D <∞) =
1

1 +
∑n−1
j=1 ρ1 · · · ρj

· ρ1 · · · ρn
1 +

∑n
j=1 ρ1 · · · ρj

.

By some delicate computation, we can show

Lemma. Fix K = 1, 2, .. and B ∈ R.
(a) If pi = 1

2 + ri, i ≥ 1, then

ρ1 · · · ρn ∼
c

n log n log log n · · · logK−2 n(logK−1 n)B
, as n→∞.

(b) If pi = 1
2 − ri, i ≥ 1, then

ρ1 · · · ρn ∼ cn log n log log n · · · logK−2 n(logK−1 n)B , as n→∞.

Furthermore, though it is very complicated, the term
∑n
j=1 ρ1 · · · ρj

can be estimated by using the above lemma. 2



Suppose

∀k ≥ 2, qk, pk > 0, qk + pk = 1.

(2,1) Random walk Y
Y = {Yk}k≥0 : a Markov chain on Z+ such that

P (Yk+1 = 1|Yk = 0) = P (Yk+1 = 2|Yk = 1) = 1,

P (Yk+1 = n+ 1|Yk = n) = qn,

P (Yk+1 = n− 2|Yk = n) = pn, n ≥ 2, k ≥ 0.

(1,2) Random walk Y ′

Y ′ = {Y ′k}k≥0 : a Markov chain on Z+ such that

P (Y ′k+1 = 0|Y ′k = 1) = P (Y ′k+1 = 2|Y ′k = 0) = 1,

P (Y ′k+1 = n− 1|Y ′k = n) = qn,

P (Y ′k+1 = n+ 2|Y ′k = n) = pn, n ≥ 2, k ≥ 0.



♠ Unless otherwise stated, we always assume that both Y and Y ′

start from y0 = y′0 = 2.

♠ Y ′ is usually called the adjoint chain of Y and vice versa.

(2,1) random walk Y

(1,2) random walk Y ′



For k ≥ 2, introduce matrix

Nk :=

(
θk θk
1 0

)
with θk :=

pk
qk
.

Proposition 1

Consider (2,1) random walk Y. For n ≥ 2, we have

P (M = n,D <∞) =
1

1 +
∑n−1
s=2 e1Ns · · ·N2et1

e1Nn · · ·N2e
t
1

1 +
∑n
s=2 e1Ns · · ·N2et1

.

We see from Proposition 1 that, in order to study the limit behavior of
P (M = n,D <∞), one has to study at first the asymptotics of

e1Nn · · ·N2e
t
1

which involve the asymptotics of the product of nonhomogeneous
matrices and are extremely complicated.



We expect that

e1Nn · · ·N2e
t
1 ∼ c%(Nn) · · · %(N2)

with %(Nk) the spectral radius of Nk.

Let ak, bk, dk, k ≥ 1 be certain positive numbers and for k ≥ 1, set

Ak =

(
ak bk
dk 0

)
. (1)

(B1) For some σ > 0, ak, bk, dk ≥ σ for all k ≥ 1 and

∞∑
k=2

|ak − ak−1|+ |bk − bk−1|+ |dk − dk−1| <∞.

Under (B1),

Ak =

(
ak bk
dk 0

)
→
(
a b
d 0

)
=: A (2)

for proper a, b, d > 0.



Suppose now condition (B1) holds. We introduce further the following
conditions which are mutually exclusive.

(B2)a ∃k0 > 0, such that ak
bk

= ak+1

bk+1
, dk
bk
6= dk+1

bk+1
, ∀k ≥ k0 and

lim
k→∞

dk/bk − dk+1/bk+1

dk+1/bk+1 − dk+2/bk+2

exists as a finite or infinite number.

(B2)b ∃k0 > 0, such that ak
bk
6= ak+1

bk+1
, dk
bk

= dk+1

bk+1
, ∀k ≥ k0 and

lim
k→∞

ak/bk − ak+1/bk+1

ak+1/bk+1 − ak+2/bk+2

exists as a finite or infinite number.



(B2)c ∃k0 > 0, such that ak
bk
6= ak+1

bk+1
, dk
bk
6= dk+1

bk+1
, ∀k ≥ k0 and

τ := lim
k→∞

dk/bk − dk+1/bk+1

ak/bk − ak+1/bk+1
6= −a+

√
a2 + 4bd

2b

exists as a finite or infinite number. In addition, if τ is finite, assume

further limk→∞
ak/bk−ak+1/bk+1

ak+1/bk+1−ak+2/bk+2
exists as a finite or infinite number.

Otherwise, if τ =∞, assume further limk→∞
dk/bk−dk+1/bk+1

dk+1/bk+1−dk+2/bk+2
exists

as a finite or infinite number.

Remark.

♠ Conditions (B2)a, (B2)b and (B2)c look very awkward, but it is
easy to find examples such that one of them is satisfied.

♠ Roughly speaking, it requires that ak, bk and dk may fluctuate in
different orders, but should fluctuate in some common manner.



Theorem 2

Suppose condition (B1) and one of (B2)a, (B2)b and (B2)c hold. Then
∀i, j ∈ {1, 2}, there exists 0 < c <∞ such that

lim
k→∞

eiAk · · ·A1e
t
j

%(Ak) · · · %(A1)
= c.

Remark. Theorem 2 has been generalized to general nonnegative ma-
trices

Ak =

(
ak bk
dk θk

)
.

H. M. Wang. On extinction time distribution of a 2-type linear-
fractional branching process in varying environment with asymp-
totically constant mean matrices. arXiv: 2106.01203, 2021.



Sketched proof of Theorem 2.

Step 1. Show that c3 <
e1Ak···A1e

t
1

%(Ak)···%(A1) < c4.

(1) Show that %(Ak) · · · %(A1) � %(Ak · · ·A1).

(2) Show that %(Ak · · ·A1) ∼ φe1Ak · · ·A1e
t
1.

Step 2. Show that limm→∞
e1Ak···Amet

1

%(Ak)···%(Am) = c.

Set xk :=
e1Ak···A1e

t
1

%(Ak)···%(A1) and fk :=
e2Ak···A1e

t
1

e1Ak···A1et
1
. Then

c3 < xk < c4,

xk+1 − xk = (%(Ak+1)xk)−1(ak+1 − %(Ak+1) + bk+1fk),

xk+1

xk
=

1

%(Ak+1)
(ak+1 + bk+1fk) ,

fk =
βk
αk +

βk−1

αk−1 + ···

β2

α2 +

β1

α1
, with αk =

ak
bk
, βk =

dk
bk
.

fk is usually referred to as the critical tail of a continued fraction.



Critical tail sequence of a continued fraction

Lemma

Suppose that αk, βk, ωk > 0, k ≥ 1 are numbers such that αk → α,

βk → β, and ωk →
√
α2+4β−α

2 =: ω, as k → ∞, where 0 < α, β < ∞
are certain constants. For k ≥ 1, let

fk :=
βk
αk +

βk−1

αk−1 + ···

β2

α2 +

β1

α1
.

Set
εk = fk − ωk, k ≥ 1 and δk = βk − ωk(αk + ωk−1), k ≥ 2.

Let q be a fixed number. We have

if lim
k→∞

εk
εk+1

= q, then |q| ≥ 1 and lim
k→∞

δk
δk+1

= q;

if lim
k→∞

δk
δk+1

= q, then |q| ≥ 1 and lim
k→∞

εk
εk+1

= q or − 1 + ω

ω
.



Lemma

Suppose condition (B1) and one of (B2)a, (B2)b and (B2)c hold. Set

βk = dk/bk, αk = ak/bk, k ≥ 1. Let ωk :=

√
α2

k+1+4βk+1−αk+1

2 , k ≥ 1 and

δk = βk − ωk(αk + ωk−1), k ≥ 2. Then limk→∞
δk
δk+1

exists as an finite

or infinite number.

Using the above two lemmas, we can show that one of the following
three cases happens:

(i)
∑
m≥2 |xm − xm−1| <∞;

(ii) xm+1 − xm,m > N1 converges to 0 alternatively;

(iii) xm,m > N2 is monotone in m.

Consequently limk→∞ xk = limk→∞
e1Ak···A1e

t
1

%(Ak)···%(A1) = c.

Theorem 2 is proven. 2



Maximum of (2,1) random walk

Let ri :=

{
Λ(K,i,B)

3 , i ≥ i0,
ri0 , i < i0,

Theorem 3

Consider (2,1) random walk Y. Fix K = 1, 2, 3, ... and B ∈ R.
(i) If qi = 2

3 + ri, i ≥ 2, then, as n→∞,

P (M = n,D <∞) ∼


c

n logn··· logK−2 n logK−1 n(logK n)2 , if B = 1,
c

n logn··· logK−2 n(logK−1 n)B
, if B > 1,

c
n logn··· logK−2 n(logK−1 n)2−B , if B < 1.

(ii) If qi = 2
3 − ri, i ≥ 2, then, as n→∞,

P (M = n,D <∞) ∼


c

nB+2 , if K = 1, B > −1,
c

n(logn)2 , if K = 1, B = −1,

cnB , if K = 1, B < −1,
c

n3 logn... logK−2 n(logK−1 n)B
, if K > 1.



Sketched proof of Theorem 3.
Note that

%(Nk) =

(
θk +

√
θ2
k + 4θk

)
/2.

If qi = 2
3 ± ri, i ≥ 2, then by Taylor enpension of %(Nk) at 0, we get

%(Nk) = 1∓ 3rk +O(r2
k) as k →∞. (3)

The proposition below yields the asymptotics of %(Nk) · · · %(N1).

Proposition 2

Suppose that σi, i ≥ 2 is a sequence of numbers such that

σi = 1± 3ri +O(r2
i ) as i→∞.

Then we have as n→∞,
σ2 · · ·σn ∼ c

(
n log n · · · logK−2 n(logK−1 n)B

)±1
,

σ2 · · ·σn∑n
i=1 σ2 · · ·σi

→ 0.



Recall that Nk :=

(
θk θk
1 0

)
with θk := pk

qk
.

By the following lemma, for the product Nk · · ·N2, k ≥ 2, requirements
of Theorem 2 are all fulfilled.

Lemma

Whenever qi = 2/3± ri, i ≥ 2,

(i) we have lim
n→∞

rn−rn+1

n2 = 1/3 and thus
∑∞
k=2 |θk+1 − θk| <∞ (B1);

(ii) for k ≥ i0, we have 1
θk
6= 1

θk+1
and limk→∞

θk+1−θk
θk+2−θk+1

= 1 (B2).

Applying Theorem 2 and Proposition 2, if qi = 2
3 ± ri, i ≥ 2, we get as

n→∞,

e1Nn · · ·N2e
t
1 ∼ c%(N2) · · · %(Nn)

∼ c
(
n log n · · · logK−2 n(logK−1 n)B

)∓1
.



But by Proposition 1, for (2,1) random walk Y, we have

P (M = n,D <∞) =
1

1 +
∑n−1
s=2 e1Ns · · ·N2et1

e1Nn · · ·N2e
t
1

1 +
∑n
s=2 e1Ns · · ·N2et1

.

Consequently, Theorem 3 can be proved by an argument similar to the
proof Theorem 1(Nearest-neighbor setting). 2

Finally, we consider (1,2) random walk Y ′ which is more difficult.

To derive similar result, besides the asymptotics of product of nonnega-
tive matrices, we need to develop further some other techniques related
to the limit periodic continued fractions and the hitting probabilities
of the walk.



Maximum of (1,2) random walk

Theorem 4

Consider (1,2) random walk Y ′. Fix K = 1, 2, 3, ... and B ∈ R.

(i) If pi = 1
3 + ri, i ≥ 2, then, as n→∞,

P (M = n,D <∞) ∼


c

n logn··· logK−2 n logK−1 n(logK n)2 , if B = 1,
c

n logn··· logK−2 n(logK−1 n)B
, if B > 1,

c
n logn··· logK−2 n(logK−1 n)2−B , if B < 1.

(ii) If pi = 1
3 − ri, i ≥ 2, then, as n→∞,

P (M = n,D <∞) ∼


c

nB+2 , if K = 1, B > −1,
c

n(logn)2 , if K = 1, B = −1,

cnB , if K = 1, B < −1,
c

n3 logn... logK−2 n(logK−1 n)B
, if K > 1.



What is the difficulty?
Let

Pk(m,n,+) = P (Y ′ hits [n,∞] before [0,m]|Y ′0 = k)

Pnk (m,n,+) = P (Y ′ hits [n,∞] at n before [0,m]|Y ′0 = k),

Pn+1
k (m,n,+) = P (Y ′ hits [n,∞] at n+ 1 before [0,m]|Y ′0 = k).

Clearly, Pk(m,n,+) = Pnk (m,n,+) + Pn+1
k (m,n,+).

By Markov property, we can get

P (M = n,D <∞) = Pn2 (1, n,+)(1− Pn(1, n+ 1,+)).

It can be shown that

1− Pn(1, n+ 1,+) =
1

1 +
∑n
s=2 e1Ns · · ·Nnet1

,

Pn2 (1, n,+) = e1N2 · · ·Nn−1

(1 +
∑n−1
s=2 e1Ns · · ·Nn−1e

t
2

1 +
∑n−1
s=2 e1Ns · · ·Nn−1et1

et1 − et2

)
,

which are hard to estimate even though we know that e1Nn · · ·Nset1 ∼
c(s)%(Nn) · · · %(Ns), since every summand there depends on n.



Continued fraction and escape probability

For n ≥ 2, set

ξn ≡
θ−1
n

1 +

θ−1
n+1

1 +

θ−1
n+2

1 + · · ·
The next lemma gives the escape probabilities of (1,2) random walk.

Lemma(Letchikov 1988)

ξ2 · · · ξn
1 +

∑n
i=2 ξ2 · · · ξi

≤1− Pn(1, n+ 1,+) ≤ ξ2 · · · ξn + ξ2 · · · ξn+1

1 +
∑n+1
i=2 ξ2 · · · ξi

,

1

1 +
∑n
i=2 ξ2 · · · ξi

≤P2(1, n,+) ≤ 1

1 +
∑n−1
i=2 ξ2 · · · ξi

.

We note that

(i) the upper bound of the term 1− Pn(1, n+ 1,+) is approximately
twice as much as the lower bound, so that it is not enough for us to get
the accurate limit behavior of 1− Pn(1, n+ 1,+);

(ii) what we need indeed is not P2(1, n,+) but Pn2 (1, n,+).



But we know that

P2(1, n,+) = Pn2 (1, n,+) + Pn+1
2 (1, n,+).

Lemma

Suppose that pi = 1
3 ± ri, i ≥ 2. Then we have

lim
n→∞

Pn2 (1, n,+)

Pn+1
2 (1, n,+)

= 2.

The proof of the lemma is a long journey.

The idea is to construct a new Markov chain related to Y ′.

Let
En = {Y ′ hits [n,∞) before it hits [0, 1]}.

Define a measure P̃ by

P̃ (·) = P (·|En).



Let
Tn := inf{k ≥ 0 : Y ′k ∈ [n,∞)}, n ≥ 3.

Then Tn <∞ almost surely.

We can show that Y ′ is a Markov chain under P̃ with transition prob-
abilities

P̃ (Y ′k+1 = 4|Y ′k = 2, k < Tn) = 1,

P̃ (Y ′k+1 = i+ 2|Y ′k = i, k < Tn) = pi
Pi+2(1, n,+)

Pi(1, n,+)
=: p̃i,

P̃ (Y ′k+1 = i− 1|Y ′k = i, k < Tn) = 1− p̃i =: q̃i, 3 ≤ i ≤ n− 1.

Based on this fact, the lemma can be proved by some delicate analysis
of the hitting times of the new Morkov chain.



Finally, we deal with the term

1− Pn(1, n+ 1,+) =
1

1 +
∑n
s=2 e1Ns · · ·Nnet1

.

Lemma

If pi = 1/3± ri, i ≥ 2, then

1− Pn(1, n+ 1,+) ∼ c ξ2 · · · ξn∑n+1
s=2 ξ2 · · · ξs−1

, as n→∞.

Idea of proof. For 2 ≤ s ≤ n+ 1, set

ys,n := e1Ns · · ·Nnet1 and ξs,n :=
ys+1,n

ys,n
.

Then e1Ns · · ·Nnet1 = ys,n = ξ−1
s,n · · · ξ−1

n,n.



Thus we obtain

1− Pn(1, n+ 1,+) =
1∑n+1

s=2 ξ
−1
s,n · · · ξ−1

n,n

=
ξ2,n · · · ξn,n∑n+1

s=2 ξ2,n · · · ξs−1,n

.

If we can show

ξ2,n · · · ξn,n ∼ cξ2 · · · ξn, (4)

n+1∑
s=2

ξ2,n · · · ξs−1,n ∼
n+1∑
s=2

ξ2 · · · ξs−1, (5)

as n→∞, then

1− Pn(1, n+ 1,+) ∼ c ξ2 · · · ξn∑n+1
s=2 ξ2 · · · ξs−1

.

It can be shown that

ξs,n =
θ−1
s

1 +

θ−1
s+1

1 + · · ·+
θ−1
n

1
.



Then (4) and (5) can be proved with the help of the limit theory
of limit periodic continued fraction and Theorem 2( e1Nn · · ·N2e

t
1 ∼

c%(N2) · · · %(Nn)). 2

The lemma below presents several limit behaviors related to ξn, n ≥ 2.

Lemma(W. 2019)

If pi = 1/3± ri, i ≥ 2, then we have

ξn = 1∓ 3rn +O(r2
n) as n→∞,

and consequently,

ξ2 · · · ξn ∼ c
(
n log n · · · logK−2 n(logK−1 n)B

)∓1
,

ξ2 · · · ξn∑n
i=1 ξ2 · · · ξi

→ 0, as n→∞.



We now give the proof of Theorem 4. Suppose that pi = 1/3±ri, i ≥ 2.
Then we have

P (M = n,D <∞) = Pn2 (1, n,+)(1− Pn(1, n+ 1,+))

∼ c 1∑n
s=2 ξ2 · · · ξs−1

× ξ2 · · · ξn∑n+1
s=2 ξ2 · · · ξs−1

, as n→∞.

Furthermore,

ξ2 · · · ξn ∼ c
(
n log n · · · logK−2 n(logK−1 n)B

)∓1
, as n→∞.

With the above facts in hands, once again, the proof of Theorem 4 is
just a step-by-step repetition of that of Theorem 1. 2



Recurrence Criteria

Proposition

(i) For K = 1, if qi = 2
3 + ri, i ≥ 2(or pi = 1

3 − ri, i ≥ 2), then

B > 1⇒ Y is transient and Y ′ is positive recurrent;

B < −1⇒ Y ′ is transient and Y is positive recurrent;

B ∈ [−1, 1]⇒ both Y and Y ′ are null recurrent.

(ii) For K ≥ 2, if qi = 2
3 + ri, i ≥ 2, then

B > 1⇒ Y is transient and Y ′ is positive recurrent;

B ≤ 1⇒ both Y and Y ′ are null recurrent.

(iii) For K ≥ 2, if qi = 2
3 − ri, i ≥ 2, then

B > 1⇒ Y ′ is transient and Y is positive recurrent;

B ≤ 1⇒ both Y and Y ′ are null recurrent.
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